
Playable Experiences at AIIDE 2016

Alexander Zook
Georgia Institute of Technology

a.zook@gatech.edu

Michael Cook
Rogue Process

Cut Garnet Games
cutgarnet@gmail.com

Eric Butler and Kristin Siu
Elsinore

Golden Glitch Studios
hello@goldenglitch.com

Matthew Guzdial and Mark Riedl
Conceptually Blended Levels in a Unity Engine

Georgia Institute of Technology
{mguzdial3, riedl}@gatech.edu

James Ryan and Ben Samuel and Adam Summerville and Michael Mateas and Noah Wardrip-Fruin
Bad News

University of California, Santa Cruz
{jor, bsamuel}@soe.ucsc.edu, asummerv@ucsc.edu, {mchaelm, nwf}@soe.ucsc.edu

Abstract

The AIIDE Playable Experiences track celebrates innovations
in how AI can be used in polished interactive experiences.
Four 2016 accepted submissions display a diversity of ap-
proaches. Rogue Process combines techniques for medium-
permanence procedurally generated hacking worlds. Elsinore
applies temporal predicate logic to enable a time-traveling
narrative with character simulation. A novel level genera-
tor uses conceptual blending to translate Mario Bros. design
styles across levels. And Bad News uses deep simulation of
a town and it’s residents to ground a mixed-reality perfor-
mance. Together these playable experiences showcase the op-
portunities for AI in interactive experiences.

AIIDE playable experiences submissions showcase innova-
tions in using AI to create interactive experiences. Tradi-
tionally AI is a secondary consideration, used to support an
existing interactive experience. Yet AI can enable novel in-
teractive experiences using existing AI techniques and even
foster innovations in AI techniques to produce new kinds
of playable experiences. The playable experiences track cel-
ebrates these efforts and emphasizes the development of
polished experiences that can be played by novice users—
demonstrating the potential for AI to reach a broad audience.

The 2016 AIIDE Playable Experiences track (chaired by
Alex Zook) includes four entries that demonstrate a breadth
of experience domains and AI techniques. AI can provide a
unique setting for interaction: Bad News simulates the his-
tory of a small town, down to the level of characters, to seed
a live performance; Rogue Process generates fictional corpo-
rations and their skyscraper offices; and a conceptual blend-
ing approach learns about Mario Bros. level designs from
data and applies design motifs to new levels. Alternatively,
AI can drive the experience itself: Elsinore simulates char-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

acter knowledge while accounting for time-travel on the part
of the player. Just as the interactive domains are diverse, so
are the AI techniques: conceptual blending on Mario Bros.
level data; logic-driven catalogs to assemble skyscrapers in
Rogue Process; temporal predicate logic to schedule and up-
date characters’ mental state in Elsinore; and a deep simula-
tion for small town life in Bad News.

In the following sections the creators discuss their ap-
proaches to using AI to foster novel interactive experiences.

Rogue Process

Figure 1: Rogue Process: Example generated skyscraper for
the player to infiltrate.

Rogue Process1 (Figure 1) is an action hacking game
about running through skyscrapers at high speeds and hack-
ing their security networks in slow motion. You play as a
renegade hacker who makes their living stealing dark cor-
porate secrets hidden away in the tops of skyscrapers. It’s

1http://www.rogueprocess.run, or on Twitter
@rogue process



being made by Michael Cook, with art and animation by
Marsh Davies. Music is currently courtesy of Strangelette.

Most of Rogue Process takes place at the tops of skyscrap-
ers, as the player breaks into various buildings in a city block
to look for servers, prototypes and valuable data. Skyscrap-
ers are procedurally generated using logic-driven catalogue
systems that define the relationship between elements of a
building and allow natural structures to form from these
rules. They also allow for subtle emergent gameplay sce-
narios to emerge, because different room types offer differ-
ent affordances to the player, allowing them to find alternate
routes through a building, or solve problems in unexpected
ways. A chemical storage warehouse might be hacked to
vent fuel into a room situated beneath it, which can then be
set alight by a power surge sent to a cleaning robot, blowing
an otherwise locked door off its hinges.

The worldbuilding of Rogue Process is heavily reliant
on procedural systems. Every building has a corporate
owner, with a slogan, logo, specialism, name and relation-
ship in the world generated through a combination of sys-
tems and approaches. We’re exploring the idea of ‘medium-
permanence’ PCG, where content is generated for an indi-
vidual player, but persists across multiple playthroughs, al-
lowing the player to develop a longer-term relationship with
the generated corporations instead of instantly discarding
them. Procedural generation extends throughout the game
beyond these examples—the pedestrians in marketplaces,
the ships in the background, the skylines they fly past. We
want the game to feel rich and varied, procedurally lavished
with little details.

We’re also using Rogue Process as an opportunity to ex-
plore how procedural generation can be better supported in
a developer workflow. Danesh, a tool for exploring genera-
tive spaces, was born out of prototype tools made for Rogue
Process, and we hope to continue to learn and expand on
these ideas while working on the game and encountering
new problems (Cook, Gow, and Colton 2016).

We’re also hoping to just make a very fun game, and so
we’d love you to come and play and tell us what you think.
There’s a lot of interesting design issues to be solved within
the game, especially reconciling precision typing with fast
action, but we’re enjoying exploring these problems and
talking about them with players. Visit us, have a go, and let
us know what you think!

Elsinore
Elsinore2 is a time-looping adventure game set in the world
of William Shakespeare’s Hamlet. Players take on the role
of Ophelia, navigating their way through Castle Elsinore
and observing the events of the tragedy unfold in real-time.
Throughout the drama, Ophelia can acquire and present
pieces of knowledge (called hearsay in-game) to the other
characters, influencing their beliefs and desires, changing
the events that take place, and thus significantly affecting the
final outcome. Ophelia is trapped in a time loop, repeating
the events of the play over and over.

2https://elsinore-game.com/

Figure 2: Elsinore: Example of the player witnessing an
event in Elsinore.

Elsinore combines hand-authored content and narrative
simulation. Individual scenes are hand-written but scheduled
using a logic-based simulation. The game state models the
mental states of characters in a temporal predicate logic, and
hand-authored events are preconditioned on these mental
states. These events occur in real time in a 3D environment;
thus the simulation must schedule these events to avoid tem-
poral conflicts with rooms and NPCs. The player’s primary
tool, presenting hearsay, changes these mental states, and
accordingly, which events may occur.

The game’s representation was chosen primarily to enable
and assist the game experience. One of the player’s primary
challenges is understanding how to manipulate the behavior
of the NPCs to avoid a tragic outcome. The NPC’s mental
states are exposed to the player. This information aids the
player in piecing together the mystery of the characters’ be-
haviors and motivations, and how the player’s actions affect
the events and the endings.

The logic-based game state enables several AI tech-
niques used to control the simulation, provide drama man-
agement, and support design tools. For the simulation, the
game uses propositional theorem proving to ensure impor-
tant events are not suppressed by scheduling conflicts with
minor events. Events, by design, are non-interruptible once
started. Many major events can only happen at very specific
times. Therefore, if a minor event related to a sidequest were
to be scheduled immediately before a major event and they
both share a character or a room, the major event would be
unable to occur. However, in the cases where major events
don’t happen due to player action, we ideally want minor
events to fill those gaps. Therefore, our simulation schedules
a minor event if, in addition to all typical preconditions, the
game can prove that no conflicting major event could possi-
bly happen within the duration of the minor event. Given the
logical preconditions, and postconditions, the duration, and
the resources for every event, a hand-written propositional
theorem prover can determine whether a minor event should
be allowed to happen.

Our game also uses this logical model for minor drama
management. While exploring the castle, the player may en-
gage in idle conversations with other NPCs. These conver-
sations cannot change the logical state, though, like the rest



of game’s dialogue, it is determined by logical state. We can
use this idle conversation to guide the player. NPCs discuss
relevant and topical information with the player, such as re-
actions to character deaths. They also often inform the player
about important scenes that the player did not witness or re-
mind them of upcoming important events.

Figure 3: Elsinore: Sample event trace from the Elsinore vi-
sualization tool. Colored boxes represent different kinds of
events, with attending characters and scheduled time along
the axes.

Finally, we are using AI to support our design workflow.
Currently, our design tools are capable of visualizing game
traces and performing static analysis of game scripts. We are
in the process of developing solver-powered design tools for
automatic QA and computational critics. Exploiting the dis-
crete, logical representation and event simulation, we are us-
ing off-the-shelf tools such as SMT solvers to reason about
an abstracted version of the game. This allows us to answer
game-design-relevant questions such as event reachability,
and will hopefully support more sophisticated queries as de-
velopment progresses.

Conceptually Blended Levels in a Unity
Engine

Figure 4: Conceptually Blended Levels: Example level and
blend.

We present a system that generates playable output in
the style of Super Mario Bros. using an unsupervised ap-
proach for concept blending models of level design. The

concept blending requires a goal and a set of probabilistic
models composed of probabilistic, spatial relationships be-
tween level components. The output is a blended probabilis-
tic model that can be used for generation and evaluation. The
playable experience is a set of generated output from these
blended models, along with their relative evaluations.

We introduced these probabilistc models in “Towards
Game Level Generation from Gameplay Videos” (Guzdial
and Riedl 2015). They are derived via a hierarchical, unsu-
pervised clustering method that learns styles of levels and
of level components from gameplay video. We have since
extended these probabilistic models with concept blending
(Guzdial and Riedl ). Concept blending describes a process
of merging disparate concepts into a blended whole, gen-
erally via mapping components of two concepts onto one
another in order to reach some “target” concept. We make
use of analogical reasoning to map relationships from one
probabilistic model onto another in order to reach a specified
target. The levels present in this demo represent the output
of conceptually blended models with a variety of targets, in-
cluding levels from the game Super Mario Bros.: The Lost
Levels and more abstract specifications such as “underwater
castle.”

We encode the levels in a new, open-source Super Mario
Bros. Unity engine3. The engine allows us to encode levels
that could not previously be played, including underwater
levels, castle levels, and our own conceptually blended out-
put. The engine also allows drag-and-drop changes to levels,
multiple players, and multiple “skins” for each level (includ-
ing Super Mario Bros. and Super Mario World). We hope
this engine will benefit the broader Game AI community.

To the best of our knowledge, this represents the first time
that conceptually blended video game levels have been made
playable at a public event. Despite the popularity of auto-
matic level generation as a research topic, it is fairly unusual
for the output of generators to be made publicly playable.
We hope that this demonstration inspires more level genera-
tion researchers to make output that is publicly playable.

Bad News
Summary
Bad News is a novel playable experience that combines
procedural generation, deep simulation, and live perfor-
mance. Players explore procedurally generated American
small towns inhabited by detailed characters with simulated
backstories. Whenever the player encounters a resident, an
improvisational actor reveals himself to perform the char-
acter live, adhering to his or her generated personality, life
history, and subjective beliefs. With Bad News, we strive to
showcase the humor, drama, and tragedy of everyday life.

How To Play
It is the summer of 1979, and an unidentified resident of a
small American town has died alone at home. The county
mortician is responsible for identifying the body and noti-
fying the next of kin, but a matter in a different part of the

3http://guzdial.com/unitySMB



Figure 5: Bad News: A player, left, engages in embodied
conversation with the actor, who improvisationally performs
as a resident of the town.

county demands his presence. Being occupied in this way,
the mortician is forced to delegate this important task to his
newly appointed assistant, the player. To carry out the task,
the player must navigate the town and converse with its res-
idents in order to obtain three crucial pieces of information,
each of which can only be discovered by knowing the pre-
ceding piece: the identity of the deceased, given only the
person’s physical appearance and home; the identity of the
next of kin, given the identity of the deceased and an explicit
notion of a next of kin (that we provide); and the current lo-
cation of the next of kin, given his or her identity and any
other relevant information that the player has gathered. Fi-
nally, upon locating the next of kin, the player must notify
him or her of the death. Throughout, she should remain dis-
creet, so as to respect the privacy of the family.

The player sits on one side of a constructed model theatre
(shown in Figure 6), with a tablet computer, a notebook, and
a pen. A live actor sits across from the player, hidden by the
theatre’s adjustable curtain; behind a permanent lower cur-
tain, a hidden screen displays a special actor interface and
a discreet microphone captures sound. Out of sight, a wiz-
ard listens to the audio feed. Gameplay always begins at the
death scene, where the actor reveals himself to play the mor-
tician, who explains what has happened and what the player
must now do. This happens diegetically and occurs as em-
bodied face-to-face conversation; the purpose of this scene
is to subtly tutorialize and to gently ease the player into both
the diegesis and the live-action role-playing that the experi-
ence requires. Crucially, the mortician and the player collab-
orate to construct a believable backstory that the player can
rely on when talking with residents in the town—after all,
it would not be discreet to openly parade as the mortician’s
assistant. From here, the mortician disappears by deploying
the curtain, and the player is left with the tablet computer
(see Figure 7), which displays a player interface that initially
describes her current location (including the body).

From here, the player proceeds by speaking commands

Figure 6: Bad News: A constructed model theatre separates
the player and our live actor.

aloud; the wizard executes these throughout the experience
by live-coding modifications to the simulation in real time.
Permissible commands include moving about the town (in a
direction, or to an address), viewing a residential or business
directory, approaching a character to engage in conversation,
and more. As the player moves about the town, her interface
updates to describe her current location. When a player ap-
proaches a town resident, the hidden actor interface updates
to display details about that character’s personality, life his-
tory, and subjective beliefs. After spending a few moments
preparing for the role, the actor pulls back the curtain to play
that character live. As the subject of conversation shifts be-
tween residents of the town, the wizard crucially updates the
actor interface to display the character’s beliefs about that
particular resident. Meanwhile, the wizard queries the simu-
lation for narrative intrigue (again by live-coding), which he
can deliver to the actor directly through a live chat session
(e.g., “you went to high school with the subject”). Gameplay
ends once the player notifies the next of kin of the death. A
typical session lasts roughly 45 minutes, though the wizard
and actor can coordinate in real time to control this. For more
details, see our longer paper (Samuel et al. 2016).

Why To Play
Bad News is appealing as a novel, AI-driven, and tender ex-
perience. While mixed reality is a growing and fairly active
area (Ohta and Tamura 2014), there are surprisingly few me-
dia works that specifically combine computation and live
improvisation. In fact, we are aware of only two other exam-
ples of this—Coffee: A Misunderstanding (Squinkifer 2014)
and Séance (TwoCan Consortium 2016)—though interest is
growing (Martens 2016). Incidentally, Séance features our
same actor, Ben Samuel, who appears to be the world’s
expert in improvisational acting under computational con-
straints; watching him perform in myriad roles is a core
appeal of the experience. Beyond its novelty, this work is
deeply AI-driven. Each Bad News town is procedurally gen-
erated using the Talk of the Town AI framework (Ryan et
al. 2015b). Specifically, towns are simulated for 140 years
of diegetic time, yielding hundreds of residents who are so-



Figure 7: Bad News: Excerpt from a business directory for
a procedurally generated town, as displayed on the player
interface.

cially embedded and who harbor subjective beliefs about
the town (which may be wrong for multiple interesting rea-
sons). This provides an abundance of narrative material and
dramatic intrigue (e.g., family feuds, love triangles, strug-
gling businesses) that exceeds the capacities of a 45-minute
playthrough and that could not have tractably been hand-
authored. Several players have reported feeling like they
were transported to the generated towns that they visited
(Green, Brock, and Kaufman 2004). Finally, Bad News is
a tender experience. As a game about death notification, it
compels the player to be sincere and tactful—many have
commented on the emotional intensity of their notification
scenes. Set in run-of-the-mill American small towns, we
strive in each playthrough, through acting and wizardry, to
showcase the humor, drama, and tragedy of everyday life.

Where To Play
Because the actor and wizard must both be present, Bad
News can only be played in person at scheduled perfor-
mances. Though we have accommodated private requests,
it is primarily intended as an exhibition piece. An early test
incarnation was conducted at the 2015 Experimental AI in
Games workshop in Santa Cruz (Ryan et al. 2015a), and
more recently our refined, longer version was performed at
the ACM Conference on Human Factors in Computing Sys-
tems (CHI) in San Jose (Ryan, Summerville, and Samuel
2016) and at Gamenest in San Francisco. The middle per-
formance was part of the Innovative Game Design track of
the CHI Student Game Competition, which Bad News won.

Conclusion
AIIDE is a meeting ground between entertainment software
developers interested in AI and academic AI researchers.
The playable experiences track is a core component of this
interaction, showcasing how developers of all stripes (aca-
demic, from large-scale industry, or even smaller indepen-
dent studios) can drive exciting innovations in how we use
AI to create novel experiences. Submissions from the 2016
Playable Experiences track demonstrate the diverse ways AI

has continued to foster innovation in interactive experiences
at many scales and in many contexts. While challenges re-
main in enabling the development of these interactive ex-
periences, the breadth of developments on display in the
2016 track highlight the potential impact of fostering this
type of combined research and development work. We hope
to see continued growth in innovative AI experiences as re-
searchers stretch to create complete, polished interactive ex-
periences and industry developers stretch to innovate in how
AI is used when creating interactive experiences.

References
Cook, M.; Gow, J.; and Colton, S. 2016. Danesh: Help-
ing bridge the gap between procedural generators and their
output. In Proc. PCG Workshop.
Green, M. C.; Brock, T. C.; and Kaufman, G. F. 2004.
Understanding media enjoyment: The role of transportation
into narrative worlds. Communication Theory.
Guzdial, M., and Riedl, M. Learning to blend computer
game levels. In Proc. ICCC.
Guzdial, M., and Riedl, M. O. 2015. Toward game level
generation from gameplay videos. In Proc. PCG Workshop.
Martens, C. 2016. Towards computational support for ex-
perimental theater.
Ohta, Y., and Tamura, H. 2014. Mixed reality: merging real
and virtual worlds. Springer.
Ryan, J. O.; Samuel, B.; Summerville, A.; and Lessard, J.
2015a. Bad News: A computationally assisted live-action
prototype to guide content creation. In Proc. EXAG.
Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015b. Toward characters who observe, tell, mis-
remember, and lie. In Proc. EXAG.
Ryan, J. O.; Summerville, A. J.; and Samuel, B. 2016. Bad
News: A game of death and communication. In Proc. CHI.
Samuel, B.; Ryan, J.; Summerville, A.; Mateas, M.; and
Wardrip-Fruin, N. 2016. Bad News: An experiment in com-
putationally assisted performance. In Proc. ICIDS.
Squinkifer, D. 2014. Coffee: A Misunderstanding.
TwoCan Consortium. 2016. Séance.


